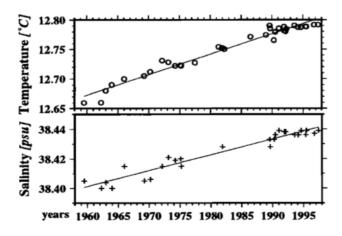
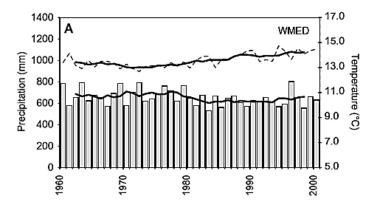

Évolution à long-terme des éléments biogènes en Méditerranée Nord-Occidentale

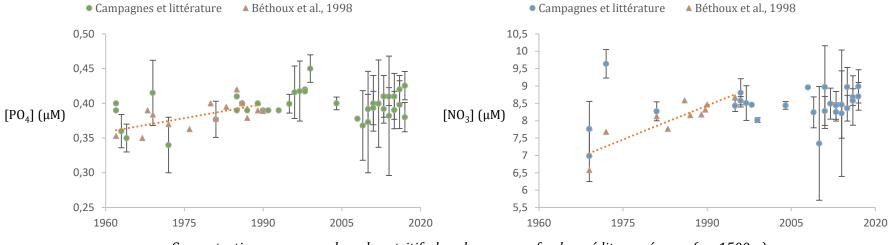
Soutenance de Master 2 - Océanographie Physique et Biogéochimique



Projection de la population sur les côtes méditerranéennes à 2030

- Mer semi-fermée, oligotrophe
- N/P ~ 22
- Échanges à Gibraltar, soumise aux apports continentaux/atmosphériques
- Pression démographique croissante
- « **Hot-spot** » du changement climatique et de l'impact anthropique


- Augmentation globale de la température/salinité océanique de surface et de fond :
 - > 0,04°C.an⁻¹ (Pascual *et al.*, 1995)


0,0035°C.an⁻¹/ 0,0011 psu.an⁻¹ (Béthoux & Gentili, 1999)

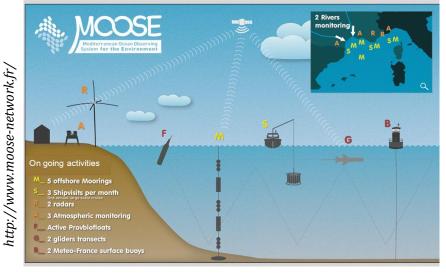
Béthoux et al., 1998

• Réduction globale des précipitations et de la décharge d'eau douce par les fleuves

Concentrations moyennes des sels nutritifs dans les eaux profondes méditerranéennes (z > 1500m)

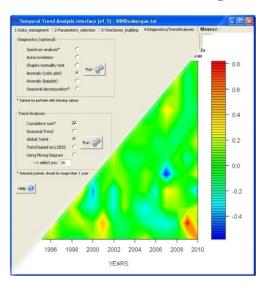
- Augmentation prévue de +0,56%.an⁻¹ pour le phosphate et +0,53%.an⁻¹ pour le nitrate (Béthoux et al., 1998)
- Concentrations actualisées : $[PO_4]$ = 0,39 ± 0,04 μ M $[NO_3]$ = 8,47 ± 0,62 μ M

Nécessité de suivis d'observation à long-terme adaptés


Présentation des Services Nationaux d'Observation (SNO)

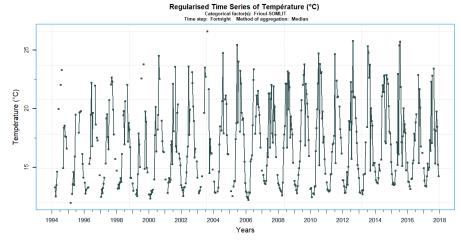
- Service d'Observation en Milieu LITtoral (SOMLIT)
 - Description de la variabilité temporelle
 - Méthodes homogènes standardisées
 - Exercices d'inter-comparaison
 - Données validées en libre accès

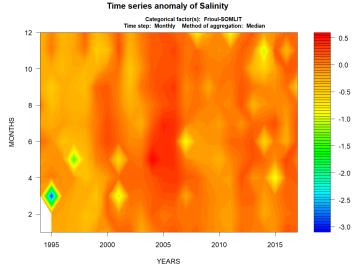
- Mediterranean Ocean Observing System for the Environment (MOOSE)
 - Observation du gradient côte-large et interfaces continent-océan-atmosphère
 - Champ thématique varié : hydrologie, courantologie, biogéochimie, météorologie, apports fluviaux et atmosphériques...
 - Variabilité spatio-temporelle à différentes échelles



Stations marines du réseau SOMLIT

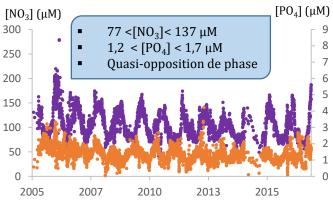
Activités réalisées au sein du réseau MOOSE


Traitement statistique

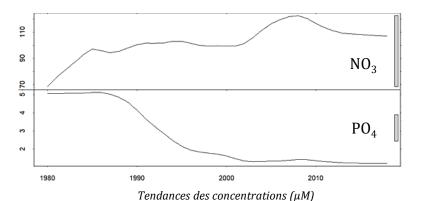

*T*emporal *T*rend *A* nalysis interface (TTA):

Devreker & Lefebvre, 2014

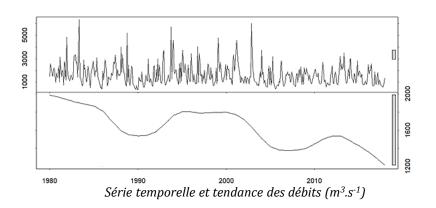
- Interface graphique d'utilisation pour R
- Procédure standard pour l'analyse de tendances
- Possibilité de diagnostiques supplémentaires : analyse spectrale, autocorrélation, anomalies, décomposition saisonnière, test de Shapiro.

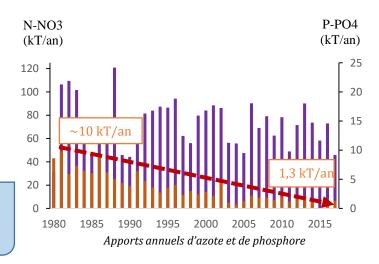


Série temporelle régularisée de la température à la station Marseille-SOMLIT

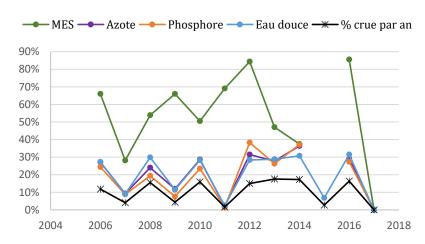


Color plot des anomalies de la salinité à la station Marseille-SOMLIT


Évolution du Rhône: Station d'Observation du Rhône en Arles (SORA) échantillonnage toutes les 90 min


Suivi à long-terme des concentrations en nitrate et phosphate (2005-2017)

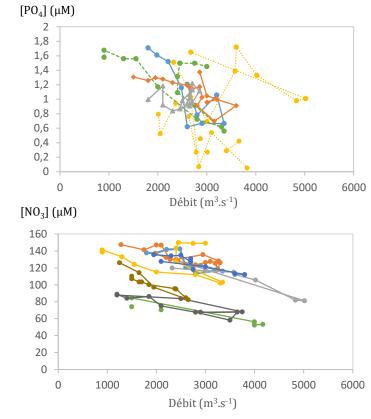
- Concentration en phosphate en déclin (-80%) depuis 1980
- Augmentation de l'utilisation d'engrais azotés (+45%) entre 1980-1990
 - Contribution au déséquilibre N/P de la Méditerranée



- Débit moyen : **1480 ± 480 m³.s**⁻¹
 - 1700 m³.s⁻¹ (Pont, 1997; Moutin *et al.*,1998)
- Diminution des débits ~20% depuis 2010

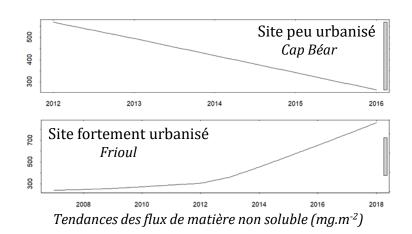
Évolution du Rhône : Impact des crues

Crue (échantillonnage toutes les 30 min) : $d\acute{e}bit > 3000 \ m^3.s^{-1}$

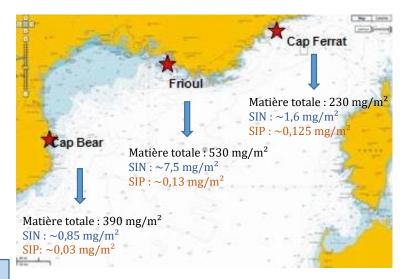

Représentation des apports dus aux crues exprimés en pourcentage des flux totaux

Contribution majeure au bilan annuel total de matière :

- Jusqu'à 80% de MES
- Jusqu'à 30-40% de l'azote et du phosphore (dissous)


Hystérésis des sels nutritifs :

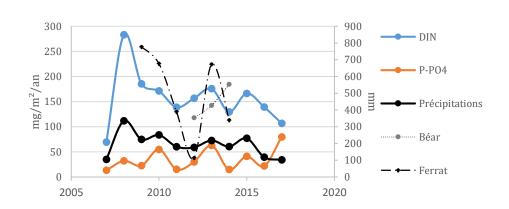
- Jusqu'à -50% des teneurs en NO₃ au cours du crue
- Déplétion quasi-totale en PO₄


Concentrations en sels nutritifs en fonction du débit

Évolution des dépôts atmosphériques

Apports en fonction du niveau d'anthropisation du site

Dépôts secs (DS):



Sites de suivis atmosphériques du réseau MOOSE

Dépôts humides (DH):

- Relation inverse entre les concentrations en sels nutritifs et la pluviométrie
 - $[PO_4]$ (μ M) $[NO_3] \mu M$ • NO3 • PO4 500 14 12 400 10 300 8 6 200 4 100 60 80 20 100 Précipitations (mm)

- Diminution des précipitations au Frioul
- Diminution des flux d'azote minéral

Ré-estimation à la baisse des flux de matières exportés par le Rhône

Termes du bilan (kT/an)	DIN	PO ₄	Azote total	Phosphore total
Apports rhodaniens	61 ± 23	1.6 ± 0.5	71 ± 27	3.5 ± 2
(2005-2017)	92.3 – 96.1 ^d	1.3 – 1.7 ^d	115 – 127 ^d	6.5 – 12.2 ^d
	72 ^b		90 ^f	7.2 – 12.4 ^e
				6 ^f
DH atmosphériques	39 ± 13	1 ± 0.5	105 ± 36	2.9 ± 1.5
(2007-2017)	25 - 75 ^a	$0.4 - 1.2^{a}$		
DS atmosphériques	77 ± 34	2 ± 0.8	111 ± 40	8.8 ± 4.4
(2007-2017)			143 ^c	
Apports	116 ± 47	3 ± 1.3	216 ± 76	11.7 ± 5.9
atmosphériques	130^{g}			
totaux				
Bilan	177 ± 70	4.6 ± 1.8	287 ± 103	15.2 ± 7.9

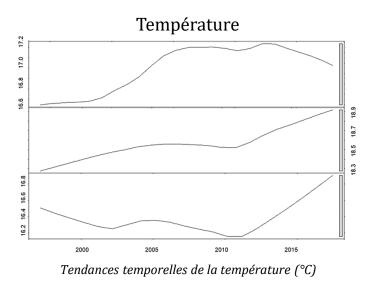
Données provenant de : ^a Migon *et al.*, 1989 ; ^b El Habr & Golterman, 1987 ; ^c Sandroni *et al.*, 2007 ; ^d Moutin *et al.*, 1998 ; ^e Van Den Broeck & Moutin (2002) ; ^f Ludwig *et al.*, 2010 ; ^g Loÿe-Pilot *et al.*, 1990.

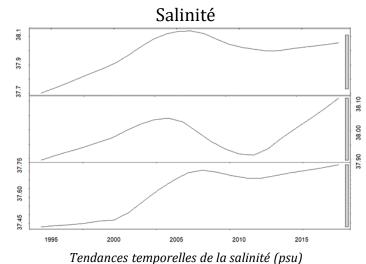
- Ré-estimation à la baisse des flux de matières exportés par le Rhône
- DS > DH → processus continu et diffus *vs.* ponctuel et local

Termes du bilan (kT/an)	DIN	PO_4	Azote total	Phosphore total
Apports rhodaniens (2005-2017)	61 ± 23 92.3 – 96.1 ^d 72 ^b	1.6 ± 0.5 1.3 – 1.7 ^d	71 ± 27 115 – 127 ^d 90 ^f	3.5 ± 2 $6.5 - 12.2^{d}$ $7.2 - 12.4^{e}$ 6^{f}
DH atmosphériques (2007-2017)	39 ± 13 25 – 75 ^a	1 ± 0.5 $0.4 - 1.2^{a}$	105 ± 36	2.9 ± 1.5
DS atmosphériques (2007-2017)	77 ± 34	2 ± 0.8	111 ± 40 143 ^c	8.8 ± 4.4
Apports atmosphériques totaux	116 ± 47 130 ^g	3 ± 1.3	216 ± 76	11.7 ± 5.9
Bilan	177 ± 70	4.6 ± 1.8	287 ± 103	15.2 ± 7.9

Données provenant de : ^a Migon *et al.*, 1989 ; ^b El Habr & Golterman, 1987 ; ^c Sandroni *et al.*, 2007 ; ^d Moutin *et al.*, 1998 ; ^e Van Den Broeck & Moutin (2002) ; ^f Ludwig *et al.*, 2010 ; ^g Loÿe-Pilot *et al.*, 1990.

Bilan des apports en Méditerranée Nord-Occidentale (NO)


- Ré-estimation à la baisse des flux de matières exportés par le Rhône
- DS > DH → processus continu et diffus *vs.* ponctuel et local
- Apports atmosphériques > apports rhodaniens


Termes du bilan (kT/an)	DIN	PO_4	Azote total	Phosphore
				total
Apports rhodaniens	61 ± 23	1.6 ± 0.5	71 ± 27	3.5 ± 2
(2005-2017)	92.3 - 96.1 ^d	1.3 - 1.7 ^d	115 - 127 ^d	6.5 - 12.2 ^d
	72 ^b		90 ^f	7.2 - 12.4 ^e
				6 ^f
DH atmosphériques	39 ± 13	1 ± 0.5	105 ± 36	2.9 ± 1.5
(2007-2017)	25 - 75 ^a	$0.4 - 1.2^{a}$		
DS atmosphériques	77 ± 34	2 ± 0.8	111 ± 40	8.8 ± 4.4
(2007-2017)			143 ^c	
Apports	116 ± 47	3 ± 1.3	216 ± 76	11.7 ± 5.9
atmosphériques	130^{g}			
totaux				
Bilan	177 ± 70	4.6 ± 1.8	287 ± 103	15.2 ± 7.9

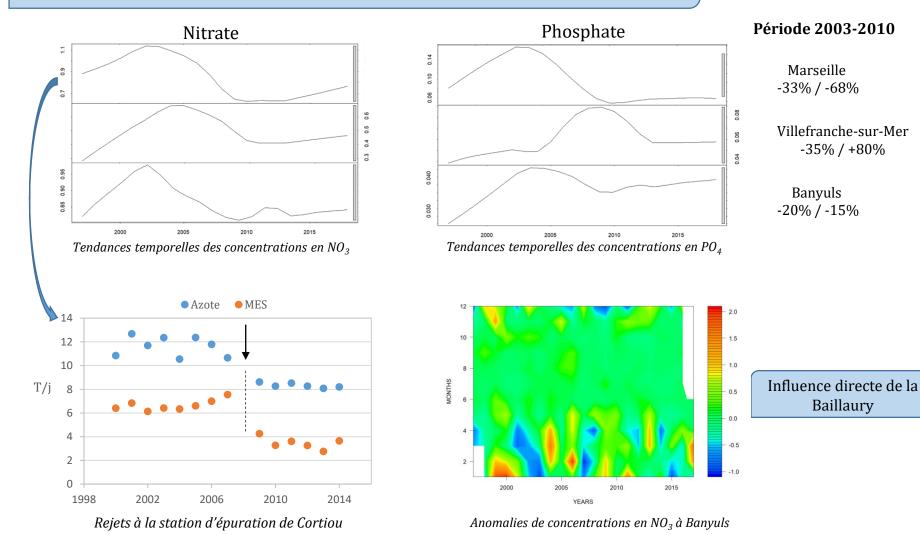
Données provenant de : ^a Migon *et al.*, 1989 ; ^b El Habr & Golterman, 1987 ; ^c Sandroni *et al.*, 2007 ; ^d Moutin *et al.*, 1998 ; ^e Van Den Broeck & Moutin (2002) ; ^f Ludwig *et al.*, 2010 ; ^g Loÿe-Pilot *et al.*, 1990.

Changement d'état des écosystèmes côtiers

• Forçage climatique global représenté par un shift au milieu des années 2000

Période 1997-2017

Marseille +0,4°C/+0,3 psu


Villefranche-sur-Mer +0,5°C/+0,2 psu

Banyuls +0,3°C/+0,3 psu

Néanmoins, influences locales spécifiques : topographie particulière, apports continentaux

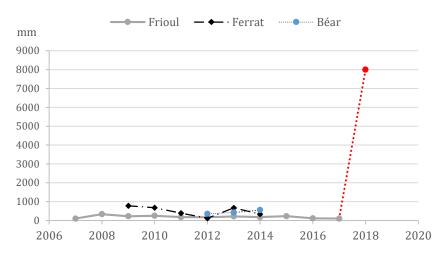
Changement d'état des écosystèmes côtiers

- Climatologie des moyennes latitudes commune aux 3 stations
- Forçage commun représenté par un shift au milieu des année 2000

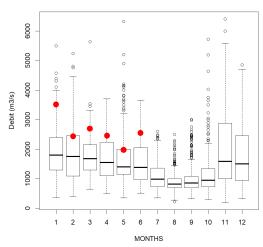
Résultats & Discussion

<u>Mise en évidence des **climatologies et tendances** à partir des données SOMLIT et MOOSE :</u>

- Diminution des débits du Rhône : 1^{er} signe clair du changement climatique
 - o Impact majeur des crues sur le bilan annuel des flux d'éléments biogènes
 - Phénomène d'hystérésis des sels nutritifs
- Hétérogénéité des dépôts atmosphériques et des études associées
 - Diminution des précipitations
 - o Augmentation possible des DS en lien avec l'urbanisation intensive
 - Réévaluation de la contribution des sources externes à la Méditerranée NO Rhône : \sim 25% et Atmosphère : \sim 75%
- Rupture des écosystèmes côtiers méditerranéens dans les années 2000 (Goberville et al., 2010)
 - o Soumis à la variabilité climatique et aux facteurs anthropiques


Stratégie adaptée des réseaux d'observations pour l'étude du changement climatique :

- Nécessité de maintien destinés à l'observation à long-terme
- Possibilité d'extension géographique pour une meilleure couverture spatiale


Année 2018 : hors-climatologie

Introduction

Forte variabilité interannuelle!

Bilan annuel des précipitations aux 3 stations côtières MOOSE

Climatologie des débits du Rhône (m³.s-1)

Nécessité de poursuivre les observations sur une échelle de temps compatible avec l'évolution climatique (>10 ans)