

QUALIFICATION DE DONNÉES TOPO- MORPHOLOGIQUES :

exemple des suivis effectués depuis 2003 sur le siteatelier DYNALIT de la plage de Porsmilin

S. Bertin^{1,2}, F. Floc'h¹, N. Le Dantec^{1,2}, M. Jaud^{1,2} et C. Delacourt¹

& les nombreux participants au programme de suivi!

Romain Cancouët¹, Marcaurélio Franzetti¹, Véronique Cuq³, Christophe Prunier¹, Jérôme Ammann¹, Emmanuel Augereau¹, Stevenn Lamarche², Mathias rouan³, Laurence David³, Déborah Belleney³, Anne Deschamps¹, Serge Suanez³, ...

¹UMR 6538 LABORATOIRE GÉOSCIENCES OCÉAN, UNIV. BREST-CNRS, INSTITUT UNIVERSITAIRE EUROPÉEN DE LA MER, RUE DUMONT D'URVILLE, 29280 PLOUZANÉ, FRANCE

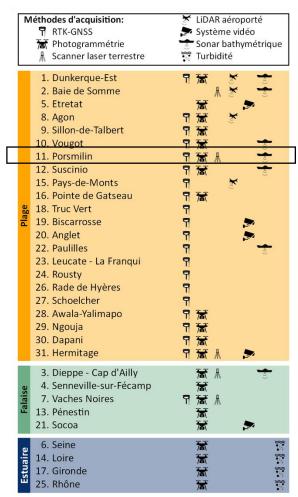
²UMS 3113 INSTITUT UNIVERSITAIRE EUROPÉEN DE LA MER (IUEM), UNIV. BREST-CNRS, RUE DUMONT D'URVILLE, 29280 PLOUZANÉ, FRANCE

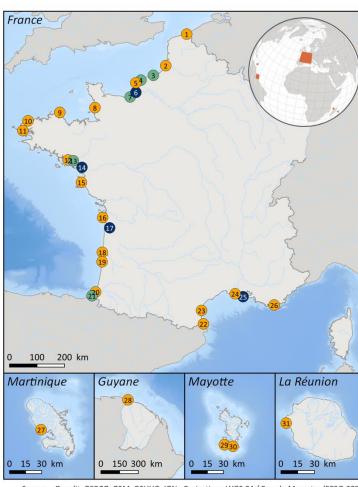
³UMR 6554 LETG (LITTORAL, ENVIRONNEMENT, GÉOMATIQUE, TÉLÉDÉTECTION), UNIV. BREST-CNRS, INSTITUT UNIVERSITAIRE EUROPÉEN DE LA MER, RUE DUMONT D'URVILLE, 29280 PLOUZANÉ, FRANCE

Email: stephane.bertin@univ-brest.fr

Plan de la presentation

- 1. Contexte général : sites-atelier du SNO DYNALIT et instrumentation
- 2. Site-atelier à Porsmilin
- 3. Suivi long-terme et multi-capteurs de la morphologie littorale : 2003 présent
- 4. Réconciliation spatio-temporelle des données morphologiques : harmonisation des données, quantification des erreurs et minimisation
- **5. Applications** : bilans sédimentaires, événements extrêmes, profondeur de fermeture, etc.





Contexte général : SNO DYNALIT

31 sites-atelier 3 environnements littoraux Mesures topographiques annuelles à semi-annuelles

- Variabilité inter-sites : superficie, morphologie, accès, etc.
- → Différentes techniques de mesures
- Différentes méthodes de traitement des données
- Différentes méthodes de qualification et validation des données ...

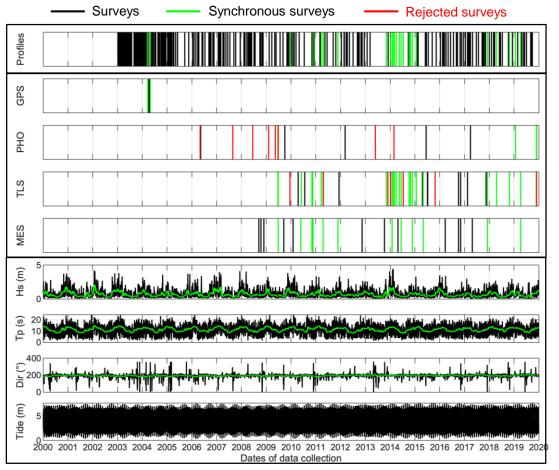
Site-atelier « Plage de Porsmilin »

- > Plage de fond d'anse
- Macro-tidale: 2.7 5.7 m marnages moyens ME - VE
- Environnement énergétique en Mer d'Iroise, mais exposition modérée
 Hs moyen ~ 0.8 m (10 s période)

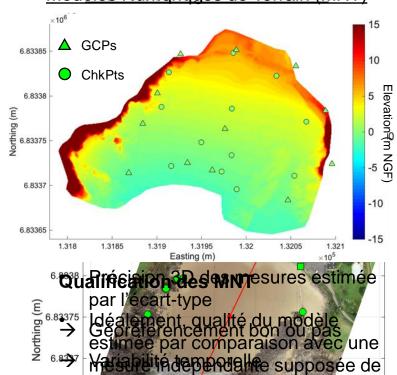
Données vagues :

- Rejeu hydrodynamique (WW3)
- Bouées houlographes
 Pierres Noires : 2005 présent
 Porsmilin : 03 05/2004

Données marées :


- Marégraphes Brest, Le Conquet
- \circ À 10 min de l'IUEM ...

Imagerie drone (24/01/2020)



Aperçu de l'ensemble de données topo-bathymétriques disponibles

Couverture spatiale	Time-series / Frequency (nominal)	Number of surveys
Profil cross-shore	2003-2019 / Monthly	253 (<mark>257</mark>)
MNT topographique	2004-2019 / Bi-annual since 2008	48 (<mark>63</mark>)
MNT bathymétrique	2008-2019 / Bi-annual	24
MNT topo-bathymétrique	2008-2019 / Annual	11

Modelesfillsudaeéplages des saipréMNT)

Predictor dependante supposee de predictor de la litra de la litra

points mesurés par GNSS-RTK

Quantification du biais (erreur moyenne) et de la précision (écart 3215 type des erreurs) ng (m)

⚠ Qualification à « l'instant t »

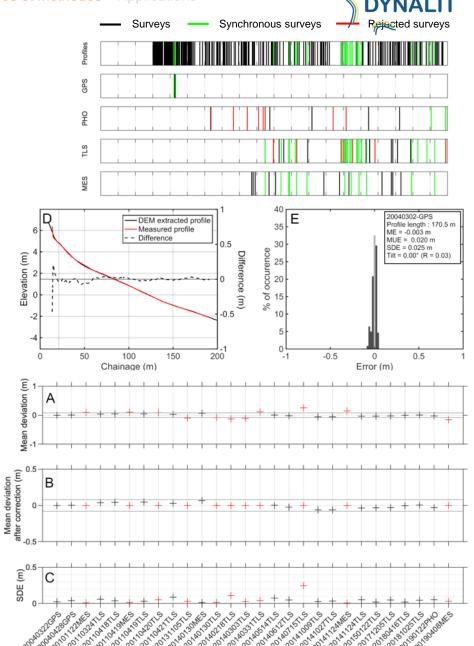
DYNALIT

Qualification des MNT à l'aide de mesures synchrones : profils

30 acquisitions synchrones Métriques utilisées : ME_Z, SDE_Z, rotation Recalage des MNT aberrants sur les profils

RESULTATS

Avant recalage:


$$<\overline{\text{ME}}_{\text{z}}>$$
 = 0.089 m (σ = 0.065 m, n = 30)

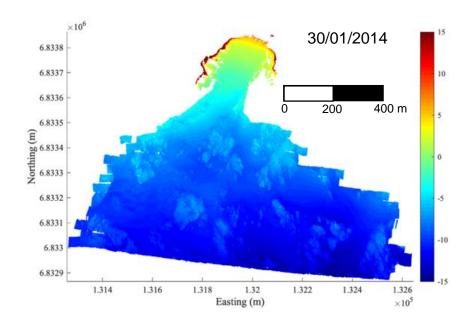
$$< SDE_z > = 0.050 (\sigma = 0.046 m)$$

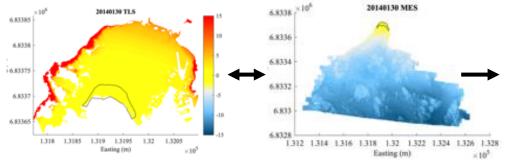
2 MNT avec erreur de rotation (rejetés)

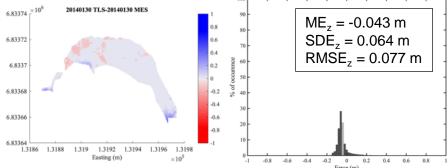
Après recalage :

$$<\overline{\text{ME}}_{z}>$$
 = 0.037 m (σ = 0.015 m, n = 28)

Qualification des MNT à l'aide de mesures synchrones : topo vs bathy


11 acquisitions synchrones


Métriques utilisées : ME_Z, SDE_Z, rotation


RESULTATS

$$< \overline{\text{ME}}_{z} > = 0.040 \text{ (} \sigma = 0.039 \text{ m, n} = 11)$$

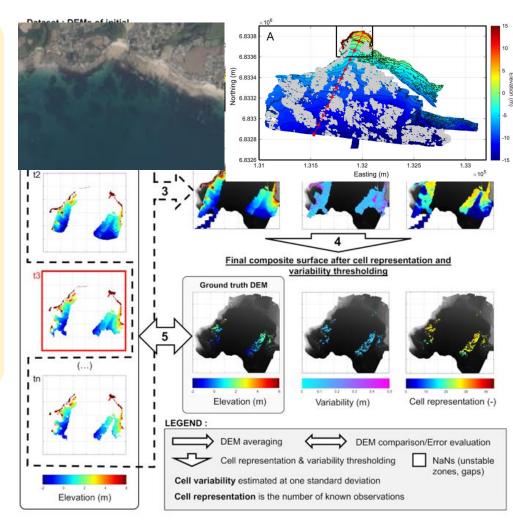
$$< SDE_z >= 0.063 (\sigma = 0.025 m)$$

Qualification des MNT à l'aide de mesures synchrones

Synthèse sur cette première méthode :

- + Plus grand nombre de points de comparaison
- + Réconcilie les différents jeux de données entre eux : profils, MNT topographiques obtenus avec différentes méthodes et MNT bathymétriques
- Couverture spatiale limitée
- Comparaisons à un « instant t »

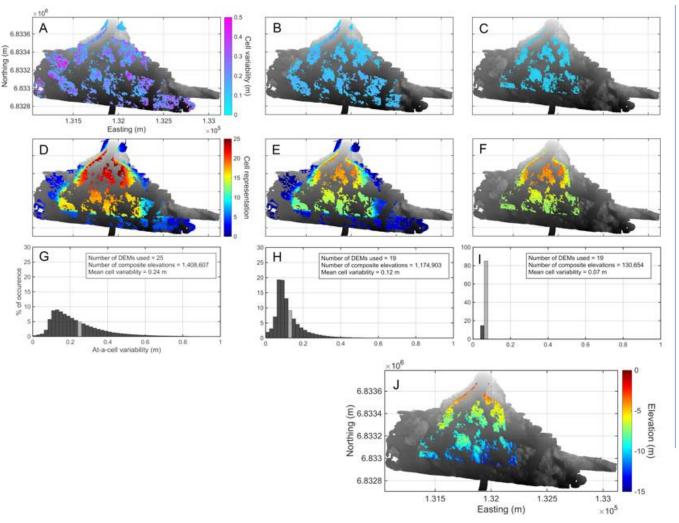
Disponibilité de mesures synchrones non garantie

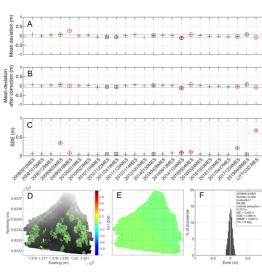

Qualification des MNT à l'aide de vérités terrain multi-temporelles (zones stables)

- O Zones supposées stables identifiées par imagerie et analyse de rugosité
- 1 MNT composite limité aux zones stables
- 2 Comparaison avec l'ensemble du jeu de données (biais, précision, rotation, etc.)
- → Détection des levés aberrants (tests statistiques sur biais/précision)

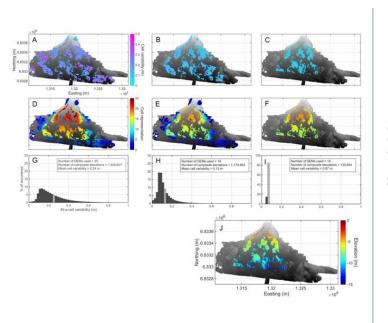
Préparation d'un MNT composite amélioré :

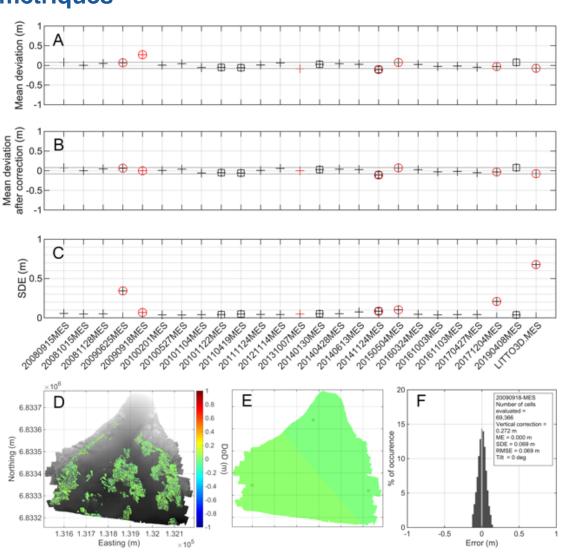
- 3 sans les levés aberrants
- **4** sans les cellules non fiables (variabilité, représentation)
- 5 Qualification des différents levés


Survey method	Number of surveys used	Number of ground truth elevations	Final cell variability (m)
TLS	30 / 43	10,272	0.10
PHO	6 / 15	16,515	0.07
MES	19 / 24	130,654	0.07

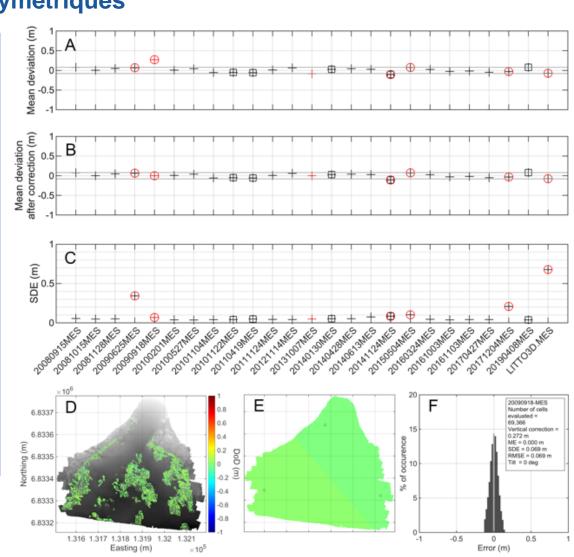


Qualification des MNT à l'aide de vérités terrain multi-temporelles (zones stables) : levés bathymétriques





Qualification des MNT à l'aide de vérités terrain multi-temporelles (zones stables) : levés bathymétriques

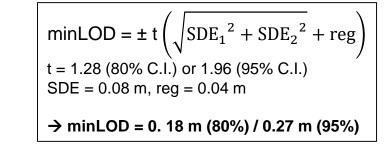


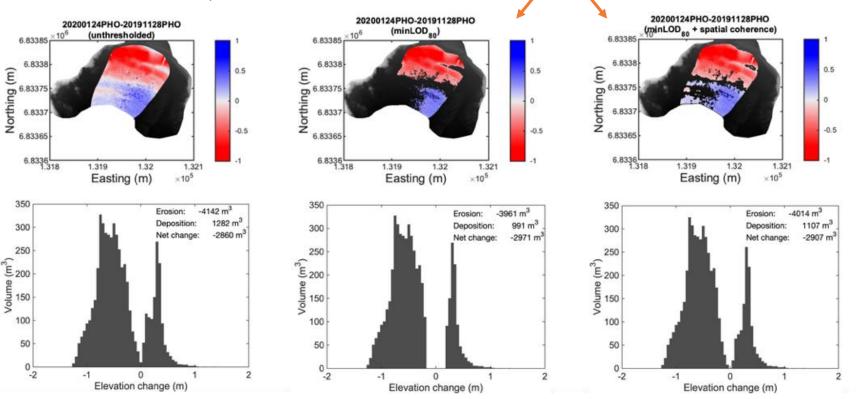
Qualification des MNT à l'aide de vérités terrain multi-temporelles (zones stables) : levés bathymétriques

- + Grand nombre de points de validation
- + Evaluation (spatio-temporelle) et minimisation des erreurs au sein d'un ensemble de données
- + Vérité terrain valable pour les levés futurs
- Limité aux zones stables (ex. roches)
- Degré de jugement nécessaire pour filtrer les cellules les moins fiables
- Incertitude résiduelle dans les vérités terrain

1 +2 Fiabilité des statistiques sur les erreurs de mesure obtenues ?

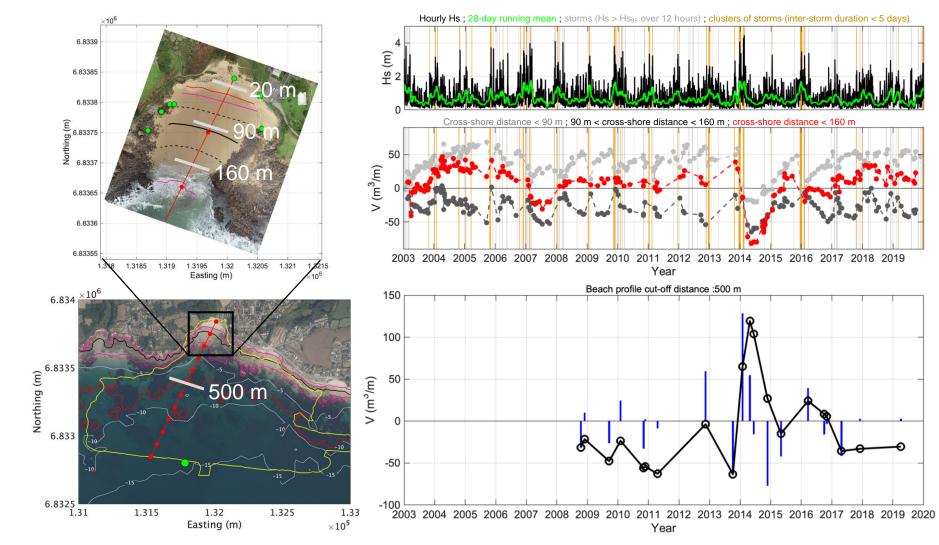
- → Erreurs de mesures évaluées au travers de méthodes complémentaires
 → fiabilité des erreurs ?
- → Méthodes de mesure présentant un biais et précision moyens ~0.04 m et 0.08 m
- → Levés bathymétriques de qualité similaire aux levés topographiques


Méthode	Erreur verticale		
de suivi	Comparaison avec profils synchrones	Vérités terrains multi- temporelles	
GPS	ME ~ 0.003 m	N.A.	
	SDE ~ 0.033 m		
	(N = 2)		
TLS	ME = 0.0192 m	ME = 0.039 m	
	SDE = 0.059 m	SDE = 0.077 m	
	N = 21	N = 36	
PHO	ME = 0.031 m	ME = 0.029 m	
	SDE = 0.053 m	SDE = 0.099 m	
	N = 1	N = 7	
MES	ME = 0.013 m	ME = 0.041 m	
	SDE = 0.016 m	SDE = 0.071 m	
	N = 6	N = 24	
FUS	ME = 0.040 m		
	SDE = 0.063 m		
	N = 11		



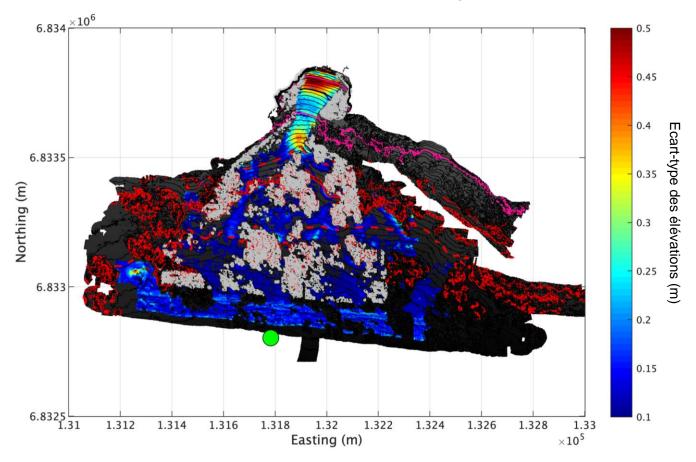
Application 1 :Différentiels topo-morphologiques

- → Zones d'érosion/accrétion entre 2 levés
- → Volumes concernés
- → Prise en compte de l'incertitude (niveau minimum de détection)

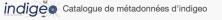


Application 2:

Bilans sédimentaires et relation avec forçage hydrodynamique



Application 3 : Profondeur de fermeture morphologique


- → Zones de changements morphologiques sur la période de suivi
- → Comparaison avec méthodes empiriques basées sur les vagues

Diffusion de l'ensemble de données : DOI & « data paper »

Q

Data from: A long-term dataset of topography and nearshore bathymetry at the macrotidal pocket beach of Porsmilin, France

Author (s)	Bertin Stéphane (UMR 6538 LGO)		
(-)	Floc'h France (UMR 6538 LGO)		
	Le Dantec Nicolas (UMR 6538 LGO)		
	Jaud Marion (UMS 3113)		
	Cancouët Romain (UMR 6538 LGO)		
	Franzetti Marcaurelio (UMR 6538 LGO)		
	Cuq Véronique (UMR 6554 LETG)		
	Prunier Christophe (UMR 6538 LGO)		
	Ammann Jérôme (UMR 6538 LGO)		
	Augereau Emmanuel (UMR 6538 LGO)		
	Lamarche Stevenn (UMR 6538 LGO)		
	Belleney Déborah (UMR 6554 LETG)		
	Deschamps Anne (UMR 6538 LGO)		
	Delacourt Christophe (UMR 6538 LGO)		
	Suanez Serge (UMR 6554 LETG)		
Date (Publication)	03/21/2021		
Publisher	INDIGEO		

Abstract

The archived multi-sensor dataset detailed here presents the results of topographic and bathymetric surveys at Porsmilin, a macrotidal pocket (embayed) beach situated in Brittany, in northwest France. The Porsmilin beach survey program was launched in January 2003 by the Institut Universitaire Européen de la Mer (IUEM/Univ. Brest) and is continuing today in the framework of the French coastal observation service SNO-DYNALIT. The dataset contains over 16 years of beach profile surveys and a large collection of recurring high-resolution subtidal and subaerial digital elevation models (DEMs) obtained using various survey methods. The dataset is accompanied by time-series of inshore waves and water levels, and enriched metadata, that will facilitate its future reuse in coastal research. The dataset is structured as follows, with separate metadata (child records) for 1) beach profiles, 2) topographic DEMs, 3) bathymetric DEMs, 4) fusion DEMs, 5) orthophotos, 6) inshore waves and 7) astronomical tides.

Data access

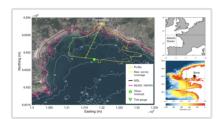
Data visualization

Porsmilin MATLAB codes

Porsmilin profiles (2003-2019)

Porsmilin topographic DEM (2000-2019)

Porsmilin bathymetric DEM (2000-2019)


Porsmilin fusion DEM (2000-2019)

Porsmilin orthophotos (2000-2019)

Porsmilin wave dataset (2000-2019)

Porsmilin tide dataset (2000-2019)

Overviews

A long-term dataset of topography and nearshore bathymetry at the macrotidal pocket beach of Porsmilin, France

Spatial extent

QUALIFICATION DE DONNÉES TOPO- MORPHOLOGIQUES :

exemple des suivis effectués depuis 2003 sur le siteatelier DYNALIT de la plage de Porsmilin

F

S. Bertin, F. Floc'h, N. Le Dantec, M. Jaud et C. Delacourt

Email: stephane.bertin@univ-brest.fr

MERCI POUR VOTRE ATTENTION!

Accès aux données :

https://doi.org/10.35110/74ecce0a-e650-4c41-9970-97e4602f1cd8

https://www.dynalit.fr/La-carte-des-sites/Porsmilin#/map