

- D'évaluer les techniques d'échantillonnage, de conservation et de mesure des paramètres,
- De standardiser les protocoles de mesure,
- De discuter des besoins et évolutions techniques.

C'est un des évènements « phares » de la Démarche Qualité.

	Matin	Après-midi		
Lundi 13	Accueil			
Mardi 14	Echantillonnage			
Mercredi 15	Atelier Technique pH	Réunions		
Jeudi 16	Journée Scientifique			
Vendredi 17	Départ			

- observatoire

Intercomparaison
Soulit
rvice d'Observation en Milieu Littoral
Brest

Erwan Amice

Journée scientifique 16 sept 2021

https://cnrs.zoom.us/j/99591141147

ID de réunion : 995 9114 1147 Code : Somlit2021

Heure	Intervenants	Titres
09:00	F. Jean et P.Rimmelin-Maury	Mission Observation côtière à l'IUEM
09:20	Paul Tréguer	Observer l'océan: les enjeux
09:40	J. Paillet	ILICO-Infrastructure de recherche Littorale et COtière, fédératrice de l'observation côtière nationale
10:00	A. Lheureux	Observation long terme des nutriments dans le réseau SOMLIT
10:20	C. Poppeshi	Exploration des évènements extrêmes de dessalure en milieu côtier: focus hivernal en rade de Brest
10:40	Pause	
11:00	J.P. Gac	Evolution du système des carbonates
11:20	P. Claquin	Couplage d'approches pour l'observation fonctionnelle de la baie de Seine
11:40	Ch. Toumi	Analyse des trajectoires des communautés de macrofaune benthique : liens avec l'habitat et les trajectoires environnementales ?
12:00	C. Paillard	Observatoire microBrest
12:30	Déjeuner	
14:00	Ph. Masquelier	Enjeux de l'observation pour la gestion d'un territoire
14:20	O. Ragueneau	ZABRI-Zone Atelier Brest-Iroise: Observation d'un socio-écosystème
14:40	M. Raimonet	Observation et Modélisation trophique sur le continuum Terre-Mer en territoire ZABRI
15:00	C. Klein	Observation du "Pelagos", évolution en rade
15:20	A. Leynaert/Maria Lopez-Acosta	Les éponges dans la dynamique des nutriments en rade de Brest
15:40	S. Petton	Acidification en milieu côtier
16:00	Pause	
16:10	A. Hénaff/N. Le Dantec	Observation intégrée régionale application aux risques d'érosion
16:30	S. Bertin	Qualification de données topo-morphologiques : cas du suivi DYNALIT-Porsmilin
16:50	M. Jaud	Imagerie et observation
17:10	A. Penaud	Changements dans les communautés planctoniques et palynologiques après la Seconde Guerre mondia tels que révélés par les archives sédimentaires
17:30	N. Savoye	Evoleco et mot de la fin
17:50	Fin	

Intercomparaison SOMLIT, Journée Scientifique 16 septembre 2021

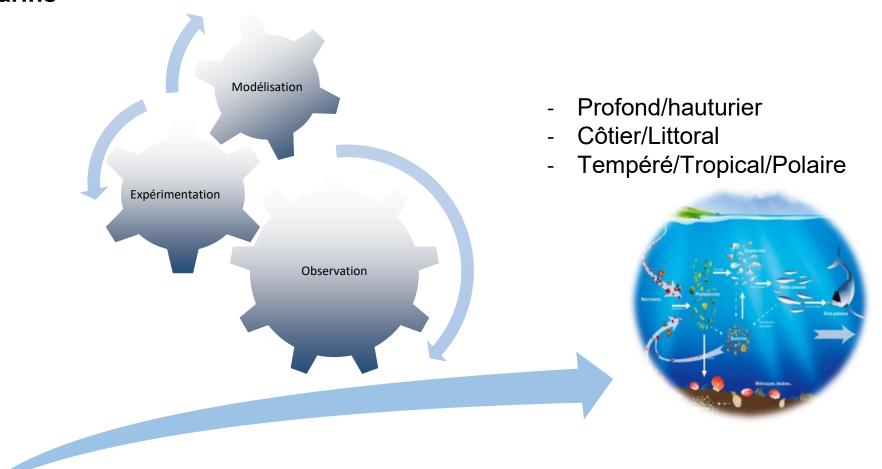
La mission Observation

Plan:

- Enjeux
- Stratégie
- Rôle de l'OSU
- Réalisations
- Prospectives

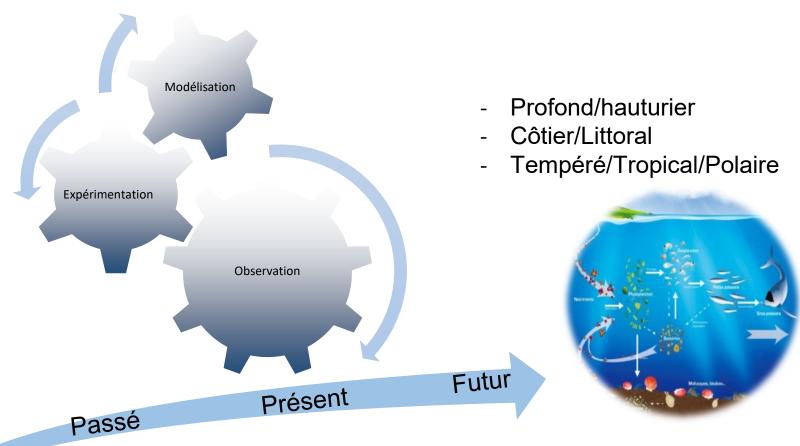
L'objectif général:

Suivre à long terme les environnements pour comprendre et prévoir leur évolution en réponse au changement climatique et aux pressions anthropiques


Enjeux

L'enjeu scientifique de l'OSU:

comprendre, modéliser pour mieux anticiper l'évolution d'environnements marins

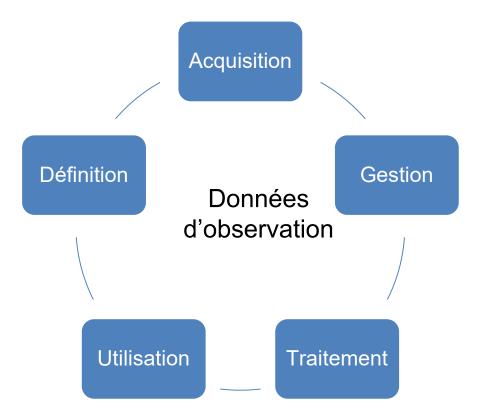


L'enjeu scientifique de l'OSU:

comprendre, modéliser pour mieux anticiper l'évolution d'environnements marins

L'enjeu technique de l'OSU:

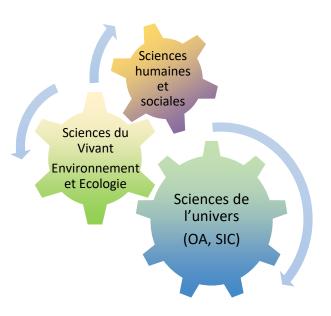
suivre des environnements marins types, avec des métriques pertinents, de façon systématique et à long terme, pour construire des bases de données patrimoniales



L'enjeu technique de l'OSU:

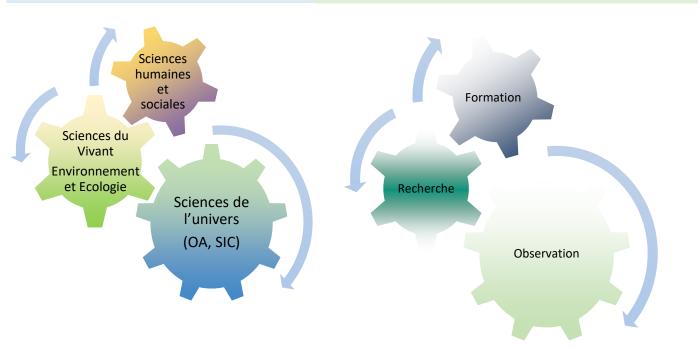
suivre des environnements marins types, avec des métriques pertinents, de façon systématique et à long terme, pour construire des bases de données patrimoniales

La Stratégie



1. Exploration

De la pluridisciplinarité vers l'interdisciplinarité

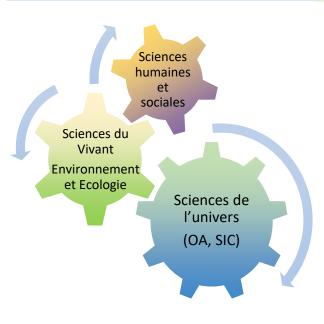


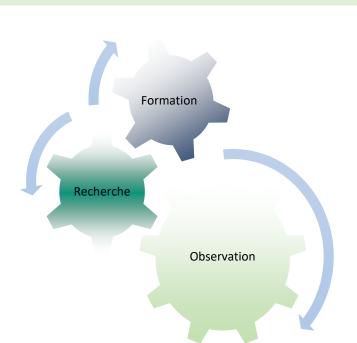
Exploration

2. Réalisation:

De la pluridisciplinarité vers l'interdisciplinarité

Une approche intégrée Observation/Recherche/Formation


1. Exploration

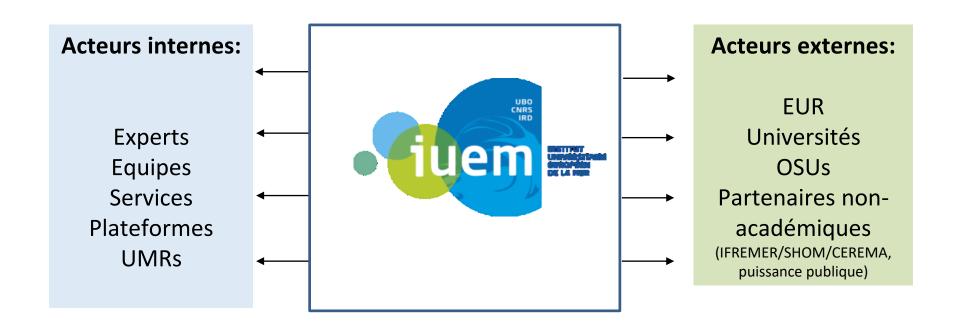

2. Réalisation

3. La consolidation

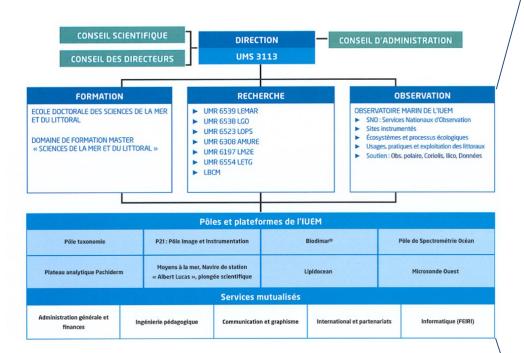
De la pluridisciplinarité vers l'interdisciplinarité

Une approche intégrée Observation/Recherche/Formation Une démarche d'amélioration continue

Le Rôle de l'OSU


Le Rôle de l'OSU= Fédérateur

Animation scientifique transverse	Coordination	Structuration	Transmission
Expertises individuelles	Moyens	Entités régionales & nationales	Formation


Le Rôle de l'OSU= Fédérateur

Le Rôle de l'OSU= Fédérateur

=> Effectif Service d'observation:
62 intervenants directs dont 17 UMS et 45
UMR (LGO, LETG, LEMAR, LOPS, AMURE, LMEE)

Services d'Observation

Systèmes d'Observation nationaux

SNO DYNALIT

S. Bertin (UMS UBO)

J. Ammann (LGO, UBO) V. Cug (LETG, UBO)

L. David (LETG, UBO)

C. Delacourt (LGO, UBO) F. Floch (LGO, UBO)

A. Hénaff (LETG, UBO)

M. Jaud (UMS, CNRS)

N. Le Dantec (UMS, UBO) P. Le Tortu (LETG, UBO)

C. Prunier (LGO, UBO)

M. Rouan (LETG UBO)

P. Stéphan (LETG, UBO) S. Suanez (LETG, UBO)

SNO ARGO-France

G. Maze (LOPS, Ifremer)
N. Kolodzieczyk (LOPS, CNAP)
C. Ravnaud-Cabanes (UMS, CNRS)

SNO SOMLIT-Brest

P. Rimmelin-Maury (UMS, CNRS) A. Leynaert (LEMAR, CNRS) J. Devesa (LEMAR, UBO)

E. Grossteffan (UMS, CNRS)
C. Lambert (LEMAR, CNRS)

SNO PhytObs

A. Leynaert (LEMAR, CNRS)
C. Klein (LEMAR, UBO)
G. Delebecg (LEMAR, UBO)

SNO COAST-HF-Brest

G. Charria (LOPS, Ifremer)

P. Rimmelin-Maury (UMS, CNRS) A. Bonnat (Ifremer)

L. Beaumont (DT INSU. CNRS)

L. Gautier (Ifremer)

E. Grossteffan (UMS, CNRS)

T. Le Bec (UMS, UBO)

L. Quéméner (Ifremer)

SNI OHASISBIO / REVOSIMA Mayotte

J.-Y. Royer (LGO, CNRS) S. Bazin (LGO, CNAP) J. Perrot (LGO, CNRS) A. Sukhovitch (LGO, CNRS)

Systèmes d'Observation régionaux

BenthObs (SNO en incubation) Habitats benthiques

J. Grall (UMS, UBO)
V. Le Garrec (UMS UBO)
E. Ar Gall (LEMAR, UBO)

M. Le Duff (UMS, UBO)
M. Lescop (UMS, UBO)

M. Lescop (UMS, UBO) M. Maguer (UMS, UBO)

A. Tauran (UMS, UBO)

VELYGER & FOREVER

S. Pouvreau (LEMAR, Ifremer)

MICROBREST

Obs. Génomique des microorganismes

L. Maignien (LMEE, UBO) C. Paillard (LEMAR, CNRS) M. Perennou (LEMAR, CNRS)

EVECOS

L. Chauvaud (LEMAR, CNRS)
A. Jolivet (LEMAR, TBM)

OSIRISC

A. Hénaff (LETG, UBO)
N. Le Dantec (UMS, UBO)
C. Meur-Ferec (LETG, UBO)
M. Philippe (AMURE, UBO)

ECOFLUX, Observation partcipative

O. Ragueneau (LEMAR, CNRS)
A. Royer (UMS, CNRS)

Soutien

IR Ilico (coordination)
I. Burden (UMS, CNRS)

Observation polaire

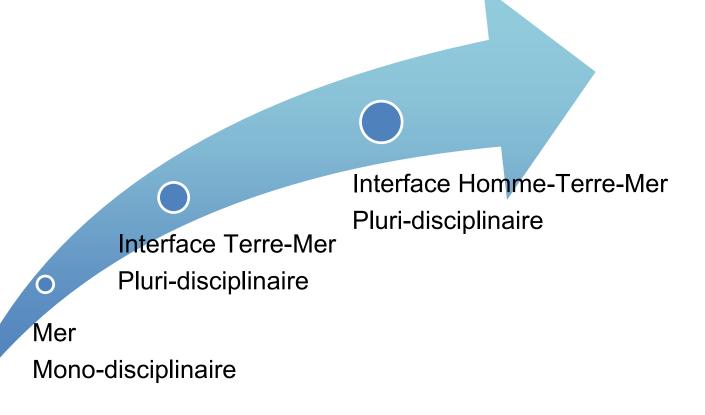
C. Marec (UMS, CNRS)

CORIOLIS

V. Racape (UMS, CNRS)

SNO : Services Nationaux d'Observation / SNI : Sites Nationaux Instrumentés / IR : Infrastructure de Recherche

Organigramme mis à jour le 01/03/2021



Réalisations

Axe 1: Evolution de l'Objet observé

Axe 2: Optimisation de l'Organisation

Plateformes multiorganismes

Plateformes mutualisées (plateaux fédératifs)

Expertise et soutien technique (services UMS)

Axe 2: Optimisation de l'Organisation

1. Définition de la donnée

2. Production de la donnée Gestion de la donnée

4.
Validation
scientifique
Valorisation de
la donnée

Ressources Service Observation

Analyste labo Instrumentaliste Métrologue Qualiticien Opérateur terrain Analyste Métrologue Chercheur-validation Chercheur-valorisation

Ressources Internes: Services communs UMS, UMR, Plateaux

Opérateur terrain, plongeur

Informaticien

Chercheur-valorisation

Ressources externes: IFREMER, DT INSU, UMR-Roscoff

Electronicien, Informaticien, Mécanique marine, Opérations terrain, Plongeur

Informaticien (Centre de Données) Chercheurvalorisateur

Axe 2: Optimisation de l'Organisation

Exemple: Pôle Image et Instrumentation (P2I)

ACOUSTIQUE ACTIVE

- MBES, SBES (bathymétrie, réflectivité)
- Sonar latéral
 Signification réflections
- Sismique réflexion
- ROV 0-300 m
- · Géodésie fond de mer
- ADCP, ADV (MES, courants, houles)
- · ALTUS (micro-topographie)
- Profileurs multifréquences à zooplancton & sédiments TAPS et Aquascat

OPTIQUE IN SITU

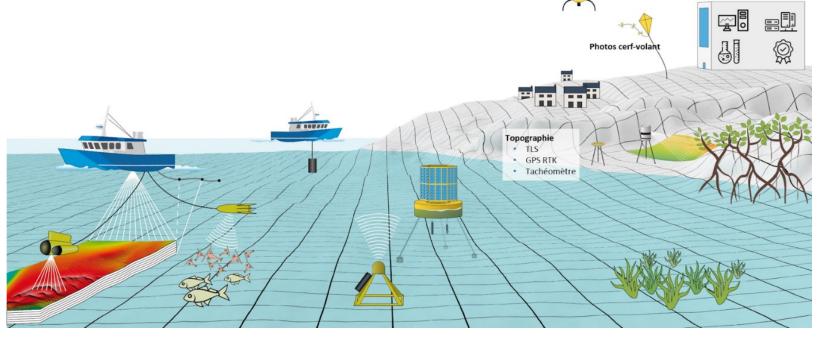
- ACS, BB9 (absorption, scattering, backscatering...)
- Spectroradiomètre (réflectance, irradiance, absorption)
- · OBS (fluorimétrie, turbidité)
- LISST

PLATEFORMES MULTI-PARAMETRES

- · Bouée instrumentée
- Station benthique instrumentée
- Sondes multi-paramètres (T,S,O2,Fluo,Turbidité)
- Capteurs additionnels (PAR, CO2, pH)
- Prélèvement

TELEDETECTION OPTIQUE

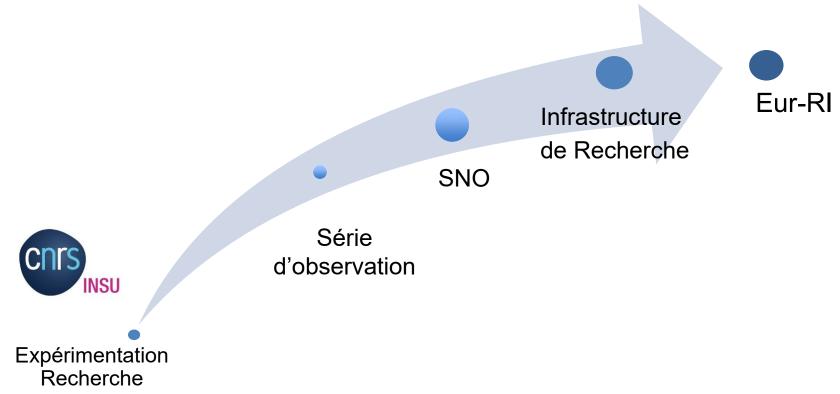
Satellite


Imagerie et MNT

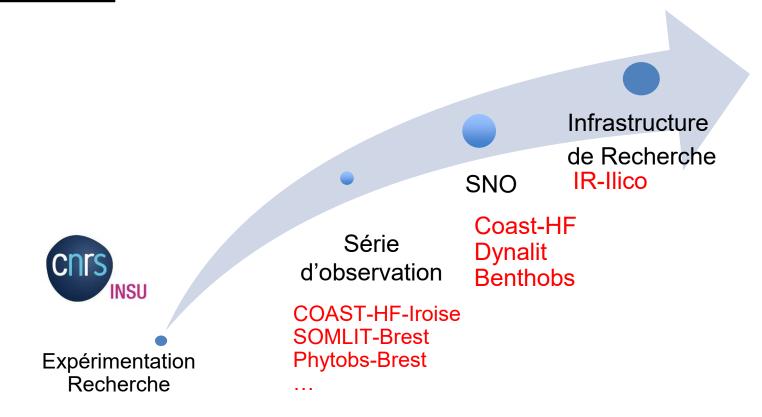
Drone

- Photos et MNT
- Hyperspectral
- Thermique
- Vidéo

METROLOGIE ET TRAITEMENTS

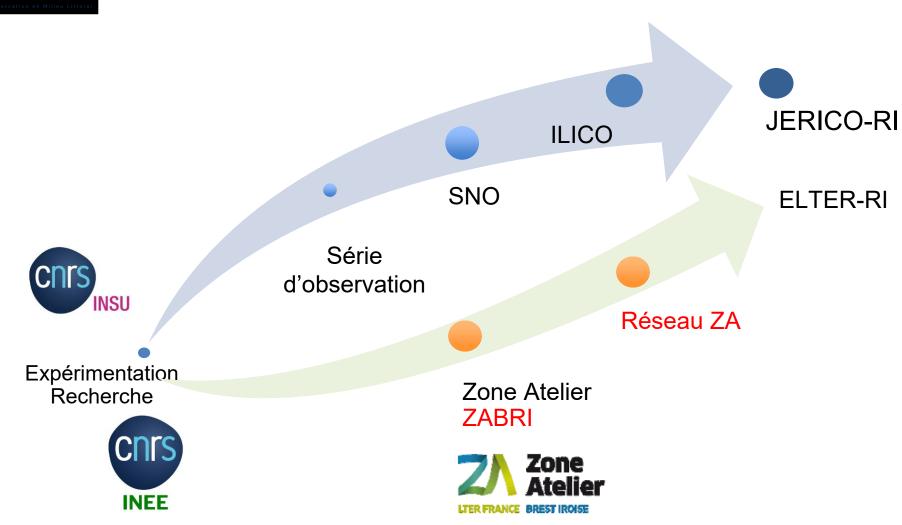

- Thermomètre de référence
- Cryobain
- Titreur O2
- Fluorimètre
- · Spectrophotomètre
- Serveur
- Logiciels

Axe 3: Contribution à la structuration



Eur-RI

Jerico-RI


Axe 3: Contribution à la structuration

Axe 3: Contribution à la structuration

Axe 5 de réalisation: Diffusion de savoir-faires

UBO

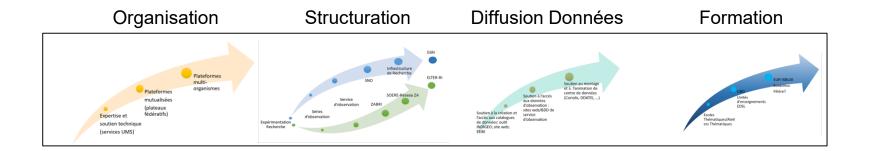
Unités d'enseignements EDSML **EUR-IS-BLUE**

Erasmus

Post-doctorat

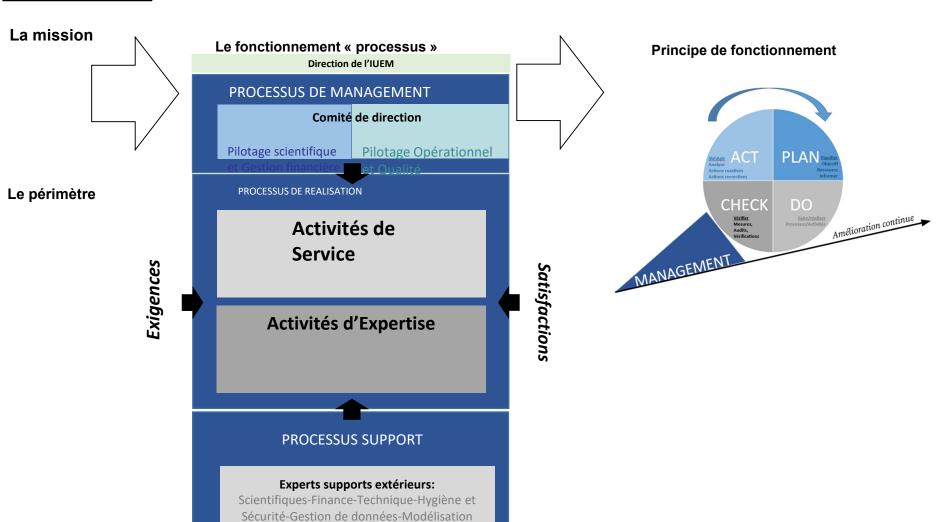
Chaire Internationale

Ecoles Thématiques/Ateliers



Prospective

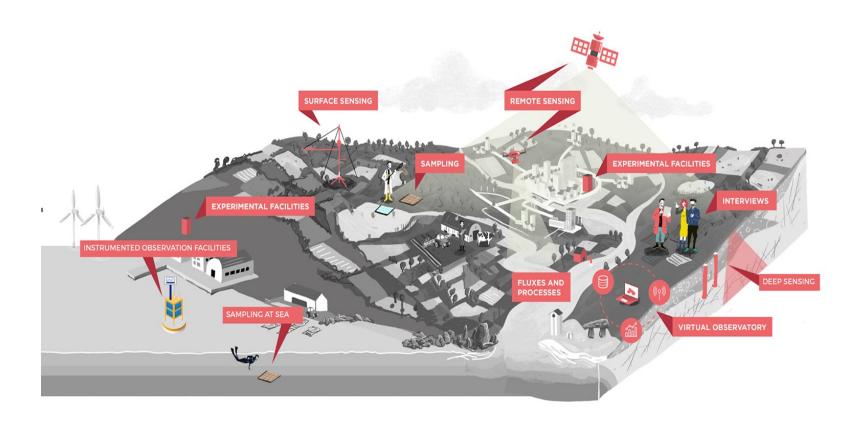
Axe 1 : Poursuite de la dynamique



Axe 1 : Poursuite & progression par la qualité

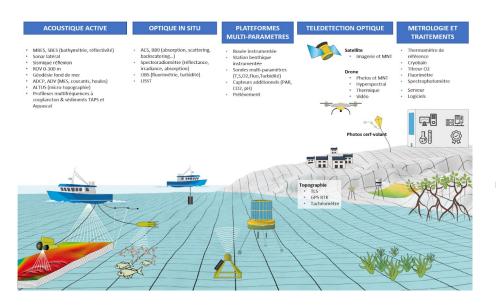
Axe 2 : Compléter le concept d'observation

Interface Terre-Mer Pluri-discipline


Mer Mono-discipline Homme-Terre-Mer
Interdisciplinaire
Pour une observation
Intégrative & sociétale

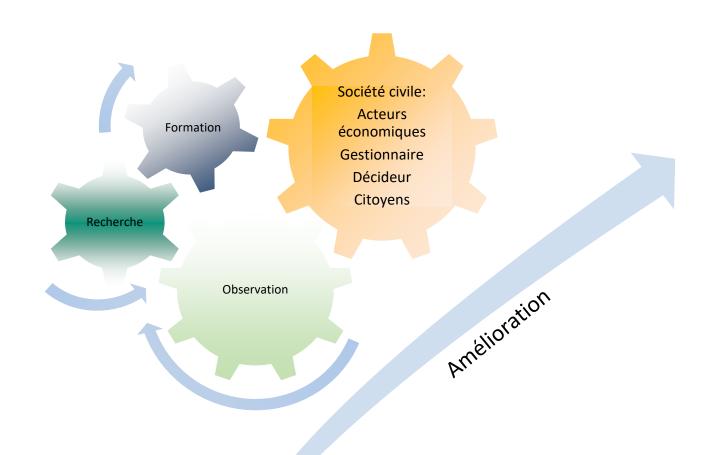
External constraints

Axe 3 : Adapter la stratégie au territoire



Axe 4 : intégrer les technologies innovantes

- Technologies low-cost
- Techniques participatives
- Big Data/Machine learning



Axe 5 : améliorer le partage des acquis

Savoir-Faire

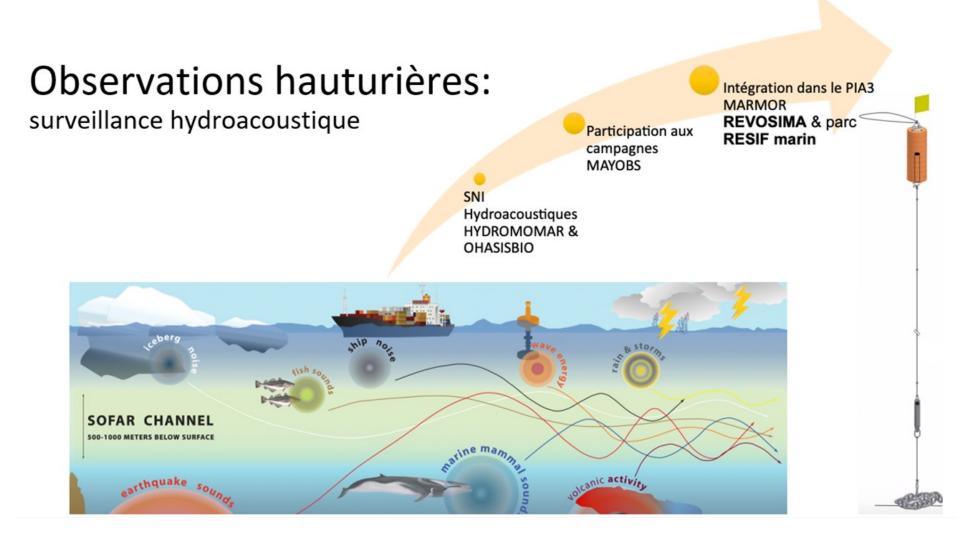
Savoir

Donnée

Conclusion

OSU-IUEM = acteur majeur de mise en œuvre de l'observation marine = acteur majeur de progrès de l'observation marine pour accompagner le besoin sociétal

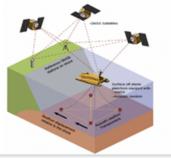
Doc annexes


2 exemples Projet de mise en application:

MARMOR: Observation intégrative pour la convergence du hauturier et du côtier à Mayotte (S. Bazin)

SNO-DYNALIT / OSIRISC: Observation intégrative pour l'anticipation de la trajectoire du socio-écosystème en **ZABrI - Zone Atelier Brest Iroise** (S. Bertin/N. Le Dantec)

MARMOR

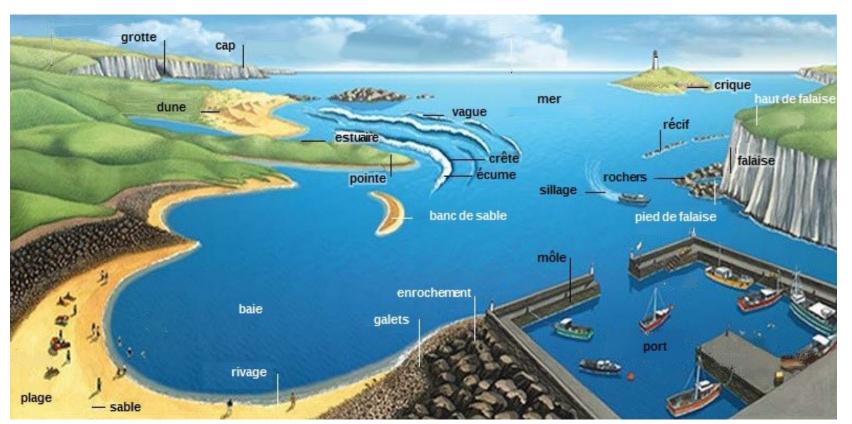

MARMOR

MARMOR - Marine Advanced geophysical Research equipment and Mayotte multidisciplinary Observatory for research and Response (PIA3 EQUIPEX: 15,4M€)

- Structurer la communauté scientifique française en fournissant les équipements de sismologie et de la géodésie sous-marines
- Mettre en place une infrastructure d'observation sous-marine à Mayotte pour
 - conduire des **recherches multidisciplinaires**, y compris sur le volet côtier et littoral, sur les phénomènes associés à la crise sismo-volcanique
 - assurer la surveillance sismologique continue en temps-réel pour le REVOSIMA

19 INSTITUTIONS PARTENAIRES

3 INFRA-STRUCTURES DE RECHERCHE



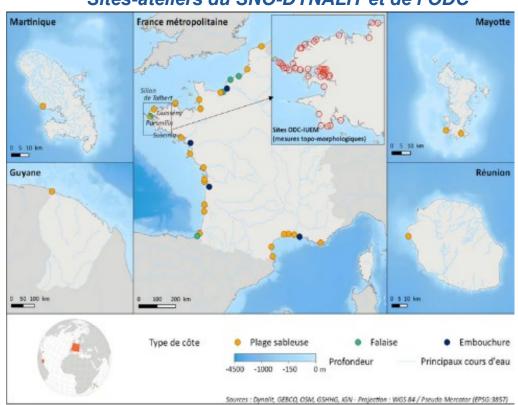
Observations côtières : une approche interdisciplinaire en lien avec les questions sociétales

SNO-DYNALIT / OSIRISC / ZABrI

Réseaux d'observations côtiers intégratifs

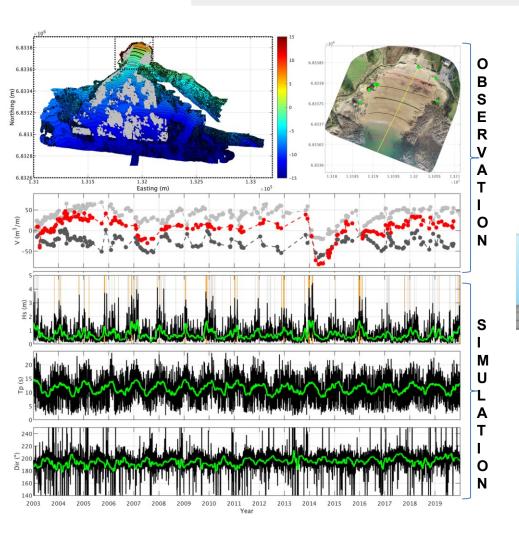
Du territoire .. à l'échelle nationale ...

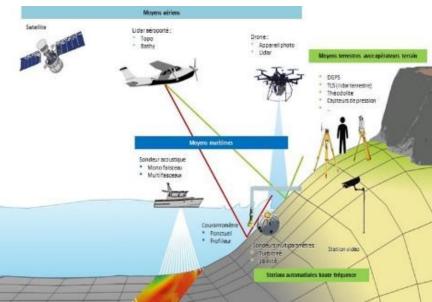
2016: IR-ILICO


8 réseaux élémentaires

2014 : Service National d'Observation DYNALIT

2002 : Observatoire du **Domaine Côtier (ODC)**


Sites-ateliers du SNO-DYNALIT et de l'ODC



Séries d'observations et instrumentation

Des environnements variés .. nécessitant une approche multi-méthodes

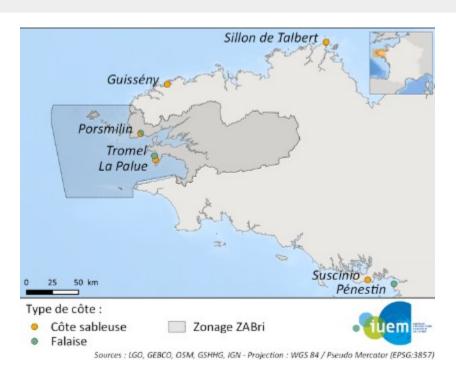
- Profils de plage (RTK-GNSS)
- Modèles Numériques de Terrain (MNT)
- Scanner laser terrestre
- Photogrammétrie par drone
- LiDAR aéroporté
- Satellites altimètres et stéréo

La dynamique physique du littoral dans la ZABrl

- 1 composante constitutive de la vulnérabilité aux risques côtiers -

5 sites d'étude du SNO-DYNALIT (CNRS-INSU) + 2 nouveaux suivis depuis 2020 .. dans la <u>Zone Atelier Brest Iroise</u> (CNRS-INEE)

4 ENJEUX MAJEURS SUR NOTRE TERRITOIRE ...



... EN LIEN AVEC LES ACTEURS DU TERRITOIRE ET LA SOCIÉTÉ

- co-construction des objectifs,
- aide à la gestion,
- sensibilisation des élus et du public,
- sciences participatives.

DES DISPOSITIFS COMMUNS

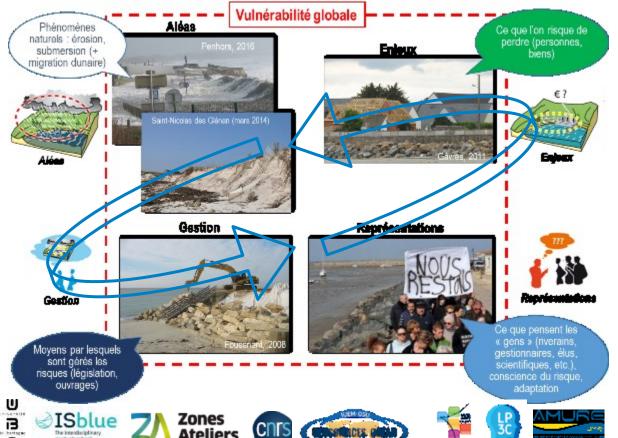
- · portail de données géographiques : Indigéo,
- · séries d'observations long-terme.

LES PARTENAIRES RISQUES COTIERS

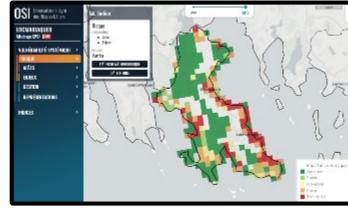
Parc Naturel Marin d'Iroise, Parc naturel régional d'Armorique, Réserve Géologique de Crozon Conseil Départemental du Finistère, EPCI, Communes

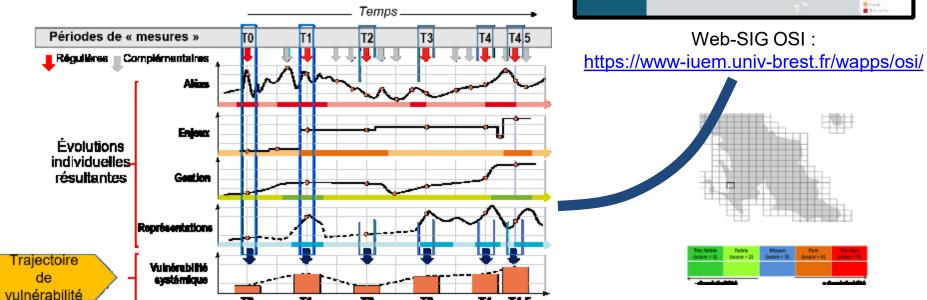
La vulnérabilité systémique

or the blue planet


Du diagnostic .. au suivi à long-terme.. pour la gestion des territoires

2019 : Litto'Risques (CD29, UBO, Cerema)

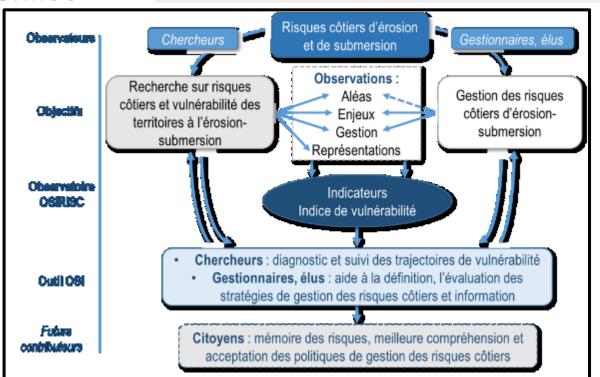



OSIRISC : vers un observatoire intégré des risques côtiers De l'élaboration .. à l'opérationnalisation

1. Définition de la donnée

2. Production de la donnée Gestion de la donnée

4.
Validation
scientifique
Valorisation de
la donnée

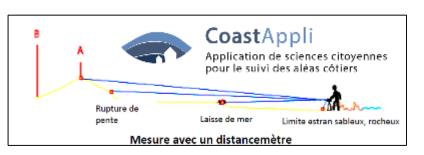


Co-construction chercheurs – gestionnaires

Des sciences collaboratives ... aux sciences participatives

Photogrammétrie smartphone

Géo-référencement direct



Station CoastSnap (OCLM)

Centipède

Litto'Risques, un modèle de partenariat chercheurs – gestionnaires Echanges croisés de savoirs

Collaboration à long-terme pour la consolidation

trait de côte

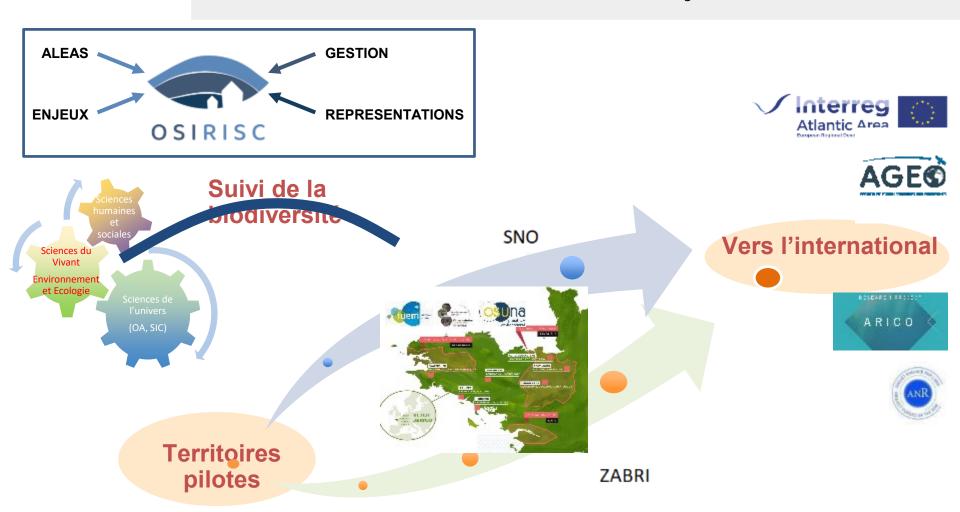
Co-construction (indicateurs) + partage d'expériences + collecte de données + déploiement conjoint de l'observatoire

www.risques-cotiers.fr

Fiches indicateurs et protocoles de mesure

des aléas :

Transfert de compétences


- Apport d'expertise
- Travaux d'étudiants avancés
- Sensibiliser les décideurs locaux : vers des stratégies de gestion durables
- Communication auprès du grand public : développer une culture du risque
- Formations (ateliers-terrain, séminaires, guides méthodologiques, livrets de synthèse)

Trajectoires de vulnérabilité des territoires

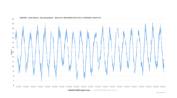
Des sites-ateliers .. aux observatoires de façade

Conclusion

La mission Observation

=

un engagement pour une vision, des réalisations communes et un projet pérenne


Axe 3: Développement de la structuration

Exemple: SNO-Coast-HF

2021 L'IUEM au cœur du projet d'Infrastructure de Recherche Européenne

MAREL-Iroise

IUEM – 21 ans d'observation en continu et à haute-fréquence ... **2018** Labellisation en tant que **Service National d'Observation** (co-animé au LOPS/IUEM)

2016 Création de

Au sein de l'Infrastructure de Recherche National ILICO

2015 (Brest, IUEM)

