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Coastal marine ecosystems are more
and more highly impacted
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INTRODUCTION

How European ecosystems have
changed over the past decades?
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How French ecosystems have changed
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Future phytoplankton diversity in a changing (RCP8.5)
Coastal marine ecosystems are more climate vs 2000-2020
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lllustration of possible future pathways
of the climate against the background
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Trajectories of the Earth System in the

Anthropocene: The Hothouse Earth Pathway
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lllustration of possible future pathways
of the climate against the background
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CHANGES IN COASTAL SYSTEMS

Ordination trajectories and
the ball-and-cup analogy
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Ecosystem recovery and resilience

... the speed with which the system returns to
its initial state following a disturbance (Holling)

Aim

Assess stability and resilience of coastal ecosystems by comparing

present biodiversity with pre-industrial baselines

Method
DNA analyses from sediment cores (Bay of Brest, ~1,400 years)
focusing on planktonic protists

Key findings

WWII heavy-metal pollution - major community shifts

e 1980s—1990s agricultural pollution = further shifts in protist
assemblages

Conclusion
No return to the Medieval baseline = irreversible shifts caused
by cumulative anthropogenic pressures (war + agriculture)

somlit

Sediment archives reveal irreversible shifts
in plankton communities after World War Il

and agricultural pollution
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How can the resilience of coastal ecosystems
under anthropogenic pressures be quantified?
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‘/E;neralized linear model c%%% Random Forest

How can the resilience of coastal ecosystems
under anthropogenic pressures be quantified?

What factors control the temporal changes
in oxygen concentrations in these coastal ecosystems?
Can these changes be modelled — and therefore predicted?
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How can the resilience of coastal ecosystems
under anthropogenic pressures be quantified?

What factors control the temporal changes
in oxygen concentrations in these coastal ecosystems?
Can these changes be modelled — and therefore predicted?
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CHANGES IN COASTAL SYSTEMS :

How can the resilience of coastal ecosystems 7
under anthropogenic pressures be quantified? 6
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CHANGES IN COASTAL SYSTEMS
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How can the resilience of coastal ecosystems
under anthropogenic pressures be quantified?

How do local environmental conditions influence
the spatio-temporal dynamics of phytoplankton groups?
Can we observe changes in recent years?
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CHANGES IN COASTAL SYSTEMS

How can the resilience of coastal ecosystems
under anthropogenic pressures be quantified?

How do local environmental conditions influence
the spatio-temporal dynamics of phytoplankton groups?
Can we observe changes in recent years?
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CHANGES IN COASTAL SYSTEMS .
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Time-series

How do local environmental conditions influence decomposition
the spatio-temporal dynamics of phytoplankton groups? = different time scales
Can we observe changes in recent years? trend, season, ‘noise'/extremes
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How can the resilience of coastal ecosystems
under anthropogenic pressures be quantified?

How do local environmental conditions influence
the spatio-temporal dynamics of phytoplankton blooms?
Can we observe changes in recent years?

Main findings
* Brest = Spring profile
* Roscoff = Clearer seasonal gradient
* Vilaine = Strong riverine influence
Conclusion

Confirms the hypothesis that ecological responses are locally structured
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How can the resilience of coastal ecosystems Phytoplankton patterns

under anthropogenic pressures be quantified? (E;acillariﬁphyceae
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* Bacillariophyceae = Nutrient-rich spring conditions o
* Dynophyceae, Euglenophyceae = Summer conditions L= =" %l
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Conclusion
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How can the resilience of coastal ecosystems
under anthropogenic pressures be quantified?

How do local environmental conditions influence
the spatio-temporal dynamics of phytoplankton blooms?
Can we observe changes in recent years?

At seasonal scale
Components close to high phosphate concentrations
-> typical spring blooms

At long-term scale
-> Potential signals of climate change
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How can the resilience of coastal ecosystems
under anthropogenic pressures be quantified?
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